R20 Transfer Line Optics Study

1-Bump Orbits

Ming-Jen Yang 10/19/06

Agenda

- * R20 beamline optics study
 - Study has never been done.
 - Need 2.5 MHz BPM system
- Lambertson field errors
 - Lam214 in RR
 - Lam222 in MI.
- Transfer matching
 - Lattice
 - Dispersion

Data

Closed bump across RR Lam214

- Keep RR closed orbit fixed.
- ▶ 1-bump orbit for proton to MI.
- Horizontal data
 - with H204 & H206.
- Vertical data
 - with V203 & V205

Included BPM data:

- RR last turn,
- R22 line,
- MI first turn.

Beam intensity

2 Booster turns and 5 bunches.

Closed long bumps across RR LAM214

RR to MI horizontal data, H204

RR to MI horizontal data, H206

RR to MI vertical data, V203

RR to MI vertical data, V205

Position data example, horizontal

Position data example, vertical

RR20 line setup

1st order orbit to MI, mm/amp

First order orbit to MI, vertical kick

H204 First order orbit, mm/amp

H204 2nd order, mm/amp^2 - (option 1)

H204 2nd order, mm/amp^2 - (option 2)

H206 1st order, mm/amp

H206 2nd order, mm/amp^2

V203 1st order, mm/amp

V203 2nd order orbit, mm/amp^2

V205 1st order, mm/amp

V205 2nd order, mm/amp^2

Estimating field errors in LAM214

- Using only H204 data set
 - ▶ Length of LAM214:
 - 4.064 m
 - Displacement at LAM214:
 - 4.54 mm @1amp

H214	Kick, amps	Field, G-M	multipole	unit	formula
S. Quad	-0.5	-17.37	-0.94	KG/M	$B_x = A_1 \Delta x$
N. Sext.	0.04	1.39	29.8	KG/M^2	$B_y = \frac{1}{2} B_2 \Delta x^2$
S. Sext.	0.095	3.3	70.7	KG/M^2	$B_x = \frac{1}{2} A_2 \Delta x^2$

Mapping Lam22 error fields

Reverse proton study

- MI BPM system at 2.5 MHz mode
- Study time.

Take data during regular Pbar transfer

- Turn off SQ703 and SQ704.
 - Simplify analysis.
- Use 304 kicker
 - Need kicker strength calibration.
- Multiple steps at 2mm each.
 - Kicker non-linearity is an issue.
 - May need MI bpm to quantify kick size.

Conclusion

Optics

- Linear optics
 - Close to design.
- Field errors
 - Linear and second order errors.
 - Normal and skew components.
 - Lam214 field error is documented.
 - Other locations

Lattice matching

▶ Pending field measurement of Lam222 in MI.

Dispersion function

- From RR to MI.
- Waiting for opportunity to take data.